Stabilized Numerical Methods for Stochastic Differential Equations driven by Diffusion and Jump-Diffusion Processes

نویسندگان

  • Adrian BLUMENTHAL
  • Adrian Blumenthal
چکیده

Stochastic models that account for sudden, unforeseeable events play a crucial role in many different fields such as finance, economics, biology, chemistry, physics and so on. That kind of stochastic problems can be modeled by stochastic differential equations driven by jumpdiffusion processes. In addition, there are situations, where a stochastic model is based on stochastic differential equations with multiple scales. Such stochastic problems are called stiff and lead for classical explicit integrators such as the Euler-Maruyama method to time stepsize restrictions due to stability issues. This opens the door for stabilized explicit numerical methods to efficiently tackle such situations. In this thesis we introduce first a stabilized multilevel Monte Carlo method for stiff stochastic differential equations. Using S-ROCK methods we show that this approach is very efficient for stochastic problems with multiple scales, but also for nonstiff problems with a significant noise part. Further, we present an improved version of the stabilized multilevel Monte Carlo method by considering S-ROCK methods with a higher weak order of convergence. Then we extend the S-ROCK methods to jump-diffusion processes. We study in detail the strong order of convergence of the newly introduced methods and we discuss the corresponding mean square stability domains. In the next part we present the multilevel Monte Carlo method for jump-diffusion processes. We state and prove a theorem that indicates the computational cost required to achieve a certain mean square accuracy. In the numerical section we compare the multilevel Monte Carlo approach to two variance reduction techniques, the antithetic and the control variates. We also show how the S-ROCK method for jump-diffusion processes, introduced in this thesis, can be used to create a stabilized multilevel Monte Carlo method for jump-diffusions that handles stiffness and considers the inclusion of jumps at the same time. Finally, we propose in this thesis a variable time stepping algorithm that uses S-ROCK methods to approximate weak solutions of stiff stochastic differential equations. A rigorous analytical study is carried out to derive a computable leading term of the time discretization error and an adaptive algorithm is suggested that adapts the time grid and adjusts the number of stages of the S-ROCK method simultaneously.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The multilevel Monte-Carlo Method for stochastic differential equations driven by jump-diffusion processes

In this article we discuss the multilevel Monte Carlo method for stochastic differential equations driven by jump-diffusion processes. We show that for a reasonable jump intensity the multilevel Monte Carlo method for jump-diffusions reduces the computational complexity compared to the standard Monte Carlo method significantly for a given mean square accuracy. Carrying out numerical experiments...

متن کامل

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

Mean-Variance Hedging When There Are Jumps

In this paper, we consider the problem of mean-variance hedging in an incomplete market where the underlying assets are jump diffusion processes which are driven by Brownian motion and doubly stochastic Poisson processes. This problem is formulated as a stochastic control problem and closed form expressions for the optimal hedging policy are obtained using methods from stochastic control and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015